Search results for "Planck scale"

showing 7 items of 7 documents

Spacetime curvature and Higgs stability after inflation

2015

We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the Standard Model only through the non-minimal gravitational coupling $\xi$ of the Higgs field. Such a coupling is required by renormalisation of the Standard Model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for $\xi\gtrsim 1$, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.

General PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)spacetime curvaturePhysics MultidisciplinaryVacuum stateFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences09 Engineeringrenormalizationvacuum stateStandard ModelGravitationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)vacuum stability0103 physical sciencesPARTICLE-PRODUCTIONELECTROWEAK VACUUMHiggs fieldHiggs particles010306 general physics01 Mathematical SciencesPlanck scalePhysicsInflation (cosmology)Science & Technology02 Physical SciencesQuantum field theory in curved spacetimeta114010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologyhep-phInflatonFIELDSThe Standard ModelCREATIONHiggs fieldHigh Energy Physics - PhenomenologyPhysical Sciencesastro-ph.COHiggs bosonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Search for extra dimensions in diphoton events from proton-proton collisions at root s=7 TeV in the ATLAS detector at the LHC

2013

The large difference between the Planck scale and the electroweak scale, known as the hierarchy problem, is addressed in certain models through the postulate of extra spatial dimensions. A search for evidence of extra spatial dimensions in the diphoton channel has been performed using the full set of proton–proton collisions at √s = 7 TeV recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. This dataset corresponds to an integrated luminosity of 4.9fb[superscript −1]. The diphoton invariant mass spectrum is observed to be in good agreement with the Standard Model expectation. In the context of the model proposed by Arkani–Hamed, Dimopoulos and Dvali, 95% confidence le…

Particle physicsSignalsGravityGeneral Physics and Astronomyddc:500.201 natural sciencesNuclear physicsElectroweak scale; Planck scale; hierarchy problemContact InteractionsHierarchy0103 physical sciencesColliders[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]CutoffInvariant massddc:530EXTRA DIMENSIONSHierarchy problem010306 general physicsQCPhysicsddc:539Integrated luminosityLarge Hadron ColliderProton proton collisions010308 nuclear & particles physicsAtlas (topology)Parton DistributionsPhysicsSettore FIS/01 - Fisica SperimentaleHigh Energy Physics::PhenomenologyGravitonConfidence levelsFísicaHierarchy problemSpatial dimensionFermion-Pair ProductionCollaborationExtra dimensionsThe standard modelLarge Hadron ColliderInvariant-mass spectraHADRON-HADRON COLLISIONSExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::ExperimentElectroweak scaleModel
researchProduct

Little Randall-Sundrum models:ϵKstrikes again

2009

A detailed phenomenological analysis of neutral kaon mixing in ``little Randall-Sundrum'' models is presented. It is shown that the constraints arising from the $CP$-violating quantity ${ϵ}_{K}$ can, depending on the value of the ultraviolet cutoff, be even stronger than in the original Randall-Sundrum scenario addressing the hierarchy problem up to the Planck scale. The origin of the enhancement is explained, and a bound ${\ensuremath{\Lambda}}_{\mathrm{UV}}g\mathrm{\text{several}}$ ${10}^{3}\text{ }\text{ }\mathrm{TeV}$ is derived, below which vast corrections to ${ϵ}_{K}$ are generically unavoidable. Implications for nonstandard ${Z}^{0}\ensuremath{\rightarrow}b\overline{b}$ couplings ar…

PhysicsPhysics::General PhysicsNuclear and High Energy Physicssymbols.namesakeParticle physicsPlanck scaleMixing (mathematics)Randall–Sundrum modelsymbolsCP violationHierarchy problemLambdaPhysical Review D
researchProduct

Planck-scale physics: facts and beliefs

2006

The relevance of the Planck scale to a theory of quantum gravity has become a worryingly little examined assumption that goes unchallenged in the majority of research in this area. However, in all scientific honesty, the significance of Planck's natural units in a future physical theory of spacetime is only a plausible, yet by no means certain, assumption. The purpose of this article is to clearly separate fact from belief in this connection.

PhysicsMultidisciplinarySpacetimePlanck scalemedia_common.quotation_subjectFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyConnection (mathematics)Theoretical physicssymbols.namesakeHistory and Philosophy of ScienceNatural unitsHonestysymbolsRelevance (law)Quantum gravityPlanckmedia_common
researchProduct

Kinetically Modified Non-Minimal Chaotic Inflation

2015

We consider Supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the phi^n potential with 2<=n<=6. We show that the coexistence of a nonminimal coupling to gravity, fR=1+cR phi^(n/2), with a kinetic mixing of the form fK=cK fR^m can accommodate values of the spectral index, ns, and the tensor-to-scalar ratio, r, favored by the Bicep2/Keck Array and Planck results for 0<=m<=4 and 2.5x10^(-4)<=rRK=cR/cK^{n/4}<=1, where the upper limit is not imposed for n=2. Inflation can be attained for subplanckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale.

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)UnitarityPlanck scaleSupergravityFOS: Physical sciencesSupersymmetryKinetic energyCoupling (probability)symbols.namesakeGeneral Relativity and Quantum CosmologyHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Quantum mechanicssymbolsEternal inflationMathematical physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Planck scale physics and topology change through an exactly solvable model

2014

We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of General Relativity (GR) formulated à la Palatini. We obtain exact analytical solutions that extend the charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale. Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the electric field. We discuss the relevance of our findings in relation to the quantum foam structure of space–time and the meaning of curvature divergences in this theory.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsModified gravityPlanck scaleTopology changeLibrary scienceFOS: Physical sciencesPlanck-scale physicsGeneral Relativity and Quantum Cosmology (gr-qc)Palatini formalismGeneral Relativity and Quantum Cosmologysymbols.namesakeTheoretical physicsGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Dynamical Vaidya solutionsResearch councilFísica AplicadasymbolsPartial support
researchProduct

Planck-scale effects on WIMP dark matter

2014

There exists a widely known conjecture that gravitational effects violate global symmetries. We study the effect of global-symmetry violating higher-dimension operators induced by Planck-scale physics on the properties of WIMP dark matter. Using an effective description, we show that the lifetime of the WIMP dark matter candidate can satisfy cosmological bounds under reasonable assumptions regarding the strength of the dimension-five operators. On the other hand, the indirect WIMP dark matter detection signal is significantly enhanced due to new decay channels.

High Energy Physics - TheoryParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPMaterials Science (miscellaneous)Scalar field dark matterBiophysicsFOS: Physical sciencesGeneral Physics and AstronomyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesdark matterHigh Energy Physics - Phenomenology (hep-ph)WIMP0103 physical sciencesWarm dark matterindirect detectionparticle physicsPhysical and Theoretical Chemistry010306 general physicsLight dark matterMathematical PhysicsDark Matter PhenomenologyPhysics010308 nuclear & particles physicsHot dark matterPhysicsWIMP dark matterFísicalcsh:QC1-999decaying dark matterHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)astroparticle physicsWeakly interacting massive particlesPlanck scale effectsMixed dark matterdirect detectionHigh Energy Physics::Experimentlcsh:PhysicsDark fluidAstrophysics - Cosmology and Nongalactic AstrophysicsFrontiers in Physics
researchProduct